Proximal Policy Optimization (PPO) Algorithm
OpenAl

"PPO has become the default reinforcement learning algorithm at
OpenAl because of its ease of use and good performance”

Brief Recap of Policy Gradient (REINFORCE)

What is Policy Gradient Methods ?

Notations and Definitions:

e 5. the state at time step ¢ within an episode

The Policy Gradient Theorem Parameterized Stochastic Policy

e a;: the action taken at time step ¢ within an episode
For any differentigble policy :fmd for any pplicy objective Cart Position))
function, the policy gradient is: e J(6): Expected return of the policy parameterized by 6.

covicsr (S rrunn
- "PU e R(7): Expected cumulative reward for taking action a in state s and
VeJ(B) = IEM [Va log 7y (at |8t)R(T)] Pole Angle Layer Layer following .

Pole Angular

Velocity e 7g(ai]st): Policy mapping states to actions using 6.
mo(ar|st)
e E.[]: Expectation under the policy .
S iy (S) mo(az|s
o\t o(aals:) o Vy: Gradient with respect to the policy parameters 6.

® Policy Gradient Methods:
o The goal of Reinforcement Learning is optimizing the policy parameters to maximize the expected
reward.
o When optimizing the policy, we need to find the direction in which the expected reward increases the
most.
o Optimize the parameter 6 directly by performing the gradient ascent 8 < 6 + a x Vg J(6) on the

performance of the objective function.

Brief Recap of Policy Gradient (REINFORCE)

Algorithm 1 REINFORCE Algorithm

Weaknesses of Policy Gradient (REINFORCE) Require: Policy mg(afs), learning rate o

1: for episode =1, 2, ..., M do

2: Generate an episode (s1,a1,71,...,87,ar,r7) by following policy
® Unstable update: Step size is very important. e 6 0

4 fort=T,T—-1,...,1do

o Step size is too large -> Generate bad policy -> Collect bad 3 GG +r
6: 0 — 04+ aGVylnmg(as|se)
T end for

Samples 8: end for
o Step size is too small -> The learning process is slow Notations and Definitions:

e my(als): the policy, a function that maps states s to actions a with pa-
rameters ¢

® Data Inefficiency:

e «: the learning rate, a positive scalar controlling the size of the policy
. . update
o Learna policy directly from the data generated by the curren

e M: the total number of episodes used for training

policy -> sensitive to the current policy's performance -> new e s the state at time step ¢ within an episode

e ;: the action taken at time step ¢ within an episode

set of trajectories for every new policy

e r;: the reward received at time step ¢ within an episode

o Set of trajectories is used only once for a single gradient o T the total number of time steps within an episode

G the return, a cumulative sum of rewards within an episode, discounted

update -> prevents it from leveraging the full potential of the) by the discount factor

e ~: the discount factor, a scalar between 0 and 1, used to weight the

collected experiences importance of immediate rewards over future rewards
3

Solving Data Inefficiency : Importance Sampling

What is Importance Sampling?

® Importance Sampling:

o Eliminate the need to collect new trajectories for
each update by using old policy to estimate the
new rewards.

o Do that by reweighting the rewards with the

importance sampling ratio.

VoI (6) = Ernny(r) [Zva log o (aylse) (H f_f’” ;) (Z"(s"sav)ﬂ

\ll =1 | it]

use old policy to sample data old policy

m Estimate the expectation of a different distribution

=Y P(X)f(X)

—ZQX)Q(X X)

~Exve | g)

Ex~p[f(X)

*Sample from q distribution to estimate p-distribution

Notations and Definitions:
e): Policy parameters to optimize.
o mg(at|s¢): Policy mapping states to actions using 6.
e g, (a]s:): Old policy before optimization.
e Ei[-]: Expectation over time steps in trajectories.
o A(atls): Estimated advantage of action a; at state s;.
o Dy [-]: Dissimilarity measure between old and updated policies.

e §: Maximum allowed change in policy per optimization step. 4

Solving Unstable: Trust Region Policy Optimization

First look at the previous work! 2
V() = EnlRelse =51 = Byl) 7esisalse =]
k=0
.. I”E o (a’t | St) A where V,(s) is the value of state s under policy 7, E;, is the expectation under policy r, R, is the return at
mMax1imize t time t, s, is the state at time t, y is the discount factor, and r; , ; , ; is the reward at time t+k+1.
0 T0o1a (ar | st) o
. T — — — 4] = k — —
SlleeCt to Et[KL[’iTgold(' | St)a 7T9(- | St)]] S) Q"(s,a) = Ex[Rils; = s5,a, = a] = E| Z YTevk+1lse =s,a, = a]
k=0
TRPO with objective function constrained by form of KL divergence Measurs the distance of two distibutions _
L Du(ri0)
D (PIIQ) = Z P()log g ~

Als,a) = Q(s,a) — V(s)
qvaluefor action a average Original Gaussian POF's KL Area to be Integrated
state s value
of that KL divergence of two policies
state

b, (P10)

(
Dy (my|Im2)[s] = Zaeami(als)log ::(Z:z;

® Trust Region Policy Optimization (TRPO) algorithm:

o Key ldea: Limitthe size of each policy update -> new policy is not too far from the old one (using KL

divergence) -> can maintain stability during learning!

o Note:

o Word “value" here refers to the expected cumulative return (total discounted reward that the

agent accumulates over a trajectory).

Trust Region Policy Optimization (TRPO)

TRPO uses hard constraint

Hard constraint in form of KL divergence between old
and new policy

maximize IAEt|: ﬂ-e(at ‘ St) At]
0 ﬂ-gold (a't ’ St)

subject to [E:[KL[mg (-] s:),ma(- | 5¢)]] < 6.

Reason : Difficulty in choosing an appropriate penalty beta coefficient (soft constraint)
® Ifthe coefficient too large -> The constraint will be too restrictive, hindering learning.

® Ifthe coefficient too small -> The constraint will be violated too much, leading to unstable updates.

Problems with Trust Region Policy Optimization (TRPO)

Problem : Computationally Expensive

Algorithm 1 Trust Region Policy Optimization
1: Input: initial policy parameters 6, initial value function parameters ¢,
2: Hyperparameters: KL-divergence limit 0, backtracking coefficient o, maximum number
of backtracking steps K
3: for k=0,1,2,... do
4: Collect set of trajectories Dy, = {7;} by running policy 7 = 7(6) in the environment.
5. Compute rewards-to-go R;.
6: Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V;, .
7. Estimate policy gradient as

T

. 1 Py

Ge = W Z Z Vo logﬂg(at\st)\gk Ay
&

T7€D), t=0

A second-order optimization (conjugate gradient) is used to solve the
8: Use the conjugate gradient algorithm to compute d CcO ns‘trained Optimization problem!

I 2
Lk ~ Hy Gk,

where ﬁk is the Hessian of the sample average KL-divergence.
9: Update the policy by backtracking line search with

Or1 = O + o’

where j € {0,1,2,...K'} is the smallest value which improves the sample loss and
satisfies the sample KL-divergence constraint.
10: Fit value function by regression on mean-squared error:

T e
1 A2
erl = argmin —— V(s 7R>
Pt gmi AT E Eﬁ (s(s0) — Ry)
TED t=0
typically via some gradient descent algorithm. 7

11: end for

#1 Key Idea of Proximal Policy Optimization (PPO)

PPO with Adaptive KL Penalty

[KLPEN (p\ — mo(at | st) A — BKL . :
(0) = E, o (a5 BEL[mg, (- | s0) mo(- | st)]

Compute d =]Et[KL[Treold(‘ | st),mo(- | 5¢)]]

— If d < diarg /1.5, B < /2
— If d > diarg X 1.5, ¢ 3 x 2

® Adaptive KL Penalty:
o Hard to pick f value -> use adaptive penalty beta coefficient

o Ifthe difference of two distribution (d) is too small - > soften the penalty

o Ifthe difference of two distribution (d) is too big - > add more penalty

#2 Key Idea of Proximal Policy Optimization (PPO)

PPO with Clipped Objective

Tt(g) — mo(at | st) 1+8

Too1q (at | St)

1

~ | molay | s¢) -
maximize [E; [MAJ 1-¢
4 Toora (t | St)

1-& 1 1+€ r

LOHIP (g) = Ty [min(ry(6) Ar, clip(re(6), 1 — &, 1+ €)Ay)|

® Clipped surrogate objective function:

1+€

1-€

o Unstable updates often happen when r changes too quickly -> limit r within a range of interval (1 —,

1+e).

#2 Key Idea of Proximal Policy Optimization (PPO)

Clipped surrogate objective function

LY (9) = I, [min'\rt(ﬁ)ﬁh clip(r¢(0),1 — €, 1+ e)ﬁt)]
% Clipped Surrogate
Objective function

® Clipped surrogate objective function:
o Key Ildea: If probability ratio is very big -> Clip it -> that value only lies within interval (1 —€,1 + €).
o Take the minimum of the clipped and unclipped objective, so the final objective is a lower bound
(i.e., a pessimistic bound) on the unclipped objective.
o Eliminates the need to handle constraints -> simpler unconstrained optimization problem.

o Can be solved using first-order methods like gradient ascent -> computationally less expensive

compared to second-order methods.

10

PPQO’s Performance

Proximal Policy Optimization (PPO) Performance

No clipping or penalty:
Clipping:
KL penalty (fixed or adaptive)

Lt(H) = rt(O)At

L(0) = min(r4(0) Ay, clip(re(0)),1 — €, 1 + €) Ay

Lt(é’) = Tt(Q)At — ,BKL[WQOM, 71'3]
algorithm avg. normalized score
No clipping or penalty -0.39
Clipping, € = 0.1 0.76
Clipping, ¢ = 0.2 0.82
Clipping, € = 0.3 0.70
Adaptive KL diarg = 0.003 0.68
Adaptive KL diarg = 0.01 0.74
Adaptive KL diare = 0.03 0.71
Fixed KL, 8 = 0.3 0.62
Fixed KL, g = 1. 0.71
Fixed KL, g = 3. 0.72

Fixed KL, 8 = 10. 0.69

1

PPQO’s Performance

Proximal Policy Optimization (PPO) Performance

2000

1500

1000

500

-500

Results in MuJoCo environments, training for one million timesteps

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1
2500 8000
2000 6000
1500
4000
/\/ ST 000
500 2000
0 0
0 1000000 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
120
P 100 3000
80
60 2000
40 v
1000
20
e 0 WM/V\A"
0
0 1000000 1000000 0 1000000

1000

800

600

400

InvertedPendulum-v1

1000000

A2C

A2C + Trust Region
CEM

PPO (Clip)

Vanilla PG, Adaptive
TRPO

12

Proximal Policy Optimization (PPO) in Practice

LfLIPJrVF—FS(Q) — &, [LtCLfP(G) — clL,YF(O) + Czs[ﬂe](st)]

Surrogate objective function a squared-error loss entropy bonus to ensure
for “critic” sufficient exploration

(Vo(s) — V™) b it
encourage "diversity

*c1, c2: empirical values, in the paper, c1=1, c2=0.01

® Breakdown of the function:

o

Clipped surrogate objective -> optimize the policy while keeping the changes in the policy within a
certain limit -> avoid large policy updates that could lead to instability.
A squared error loss -> make the predicted state-value function as close as possible to the target value

function -> accurate approximation of the expected future returns for a given state.

Entropy bonus -> adding intensive for choosing actions with higher entropy -> can explore different

parts of the state-action space. 3

Thank You

14

	Slide 1: Proximal Policy Optimization (PPO) Algorithm OpenAI
	Slide 2: Brief Recap of Policy Gradient (REINFORCE)
	Slide 3: Brief Recap of Policy Gradient (REINFORCE)
	Slide 4: Solving Data Inefficiency : Importance Sampling
	Slide 5: Solving Unstable: Trust Region Policy Optimization
	Slide 6: Trust Region Policy Optimization (TRPO)
	Slide 7: Problems with Trust Region Policy Optimization (TRPO)
	Slide 8: #1 Key Idea of Proximal Policy Optimization (PPO)
	Slide 9: #2 Key Idea of Proximal Policy Optimization (PPO)
	Slide 10: #2 Key Idea of Proximal Policy Optimization (PPO)
	Slide 11: PPO’s Performance
	Slide 12: PPO’s Performance
	Slide 13: Proximal Policy Optimization (PPO) in Practice
	Slide 14: Thank You

