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Brief Recap of Adversarial Attacks
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Brief Recap of Adversarial Training

3

Model architecture

1. Model initialization.

Clean 

image

Adversarial

examples

2. Generate adversarial examples (attacked images).

Adversarial attack

+

Adversarial examples

Clean 

image

Training
Robust

model

3. Training the robust model.

Attacked

image

4. Evaluation.

• Test set on clean images.
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Brief Recap of Test-Time Defense
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• Either purify the input via test-time augmentation or modify the model parameters [23].

• Input purification : Adding additional defense perturbation layer to the model (white-box or black-box) 

[24, 25]

• Model adaptation : Has access to the model parameters -> Only update some params while keeping 

most of it frozen.

Figure 1. Different test-time defenses methods [23].



Problems with Previous Works
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• Adversarial Training : Needs to generate adversarial image for every/most input -> Massive 

computational cost [7, 8, 9, 10, 21, 23, 24].

• Test-Time Defense : Significantly increase the inference time [17, 23].



Brief Recap of Visual Prompting [26]
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• Inspired by text prompting -> Leverage input space only to do transfer-learning.

• Successfully increased the performance on downstream task compared with zero-shot prediction.

Figure 2. Illustration of visual prompting proposed by [26].



Visual Prompting for Efficient Test-Time Defense [17] !
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• Leverage Visual Prompting (VP) [26] to improve inference time for test-time defense.

• Achieve up to 42x inference time speed up compared to previous test-time defense methods [17].

• Originally defined as follows :

Figure 3. Original optimization problem of vanilla VP [26].



Not A Straightforward Approach [17]
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• Extend the concept of VP for adversarial robustness.

• Straightforward approach : Combine adversarial loss with generalization loss.

• *Note : Regularization parameter to balance between generalization and adversarial robustness.

• Called Universal AVP (U-AVP). Can be solved with common min-max optimization method.

Figure 4. Optimization problem of U-AVP [17].



Problems with Universal Adversarial Visual Prompt (U-AVP) [17]
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• Dropped significantly in terms of standard accuracy (PGD step = 0).

• Not quite robust in terms of robustness accuracy (only improve ~18%).

• Reason : Due to same visual prompt for all inputs.

Figure 5. Performance of U-AVP compared with vanilla VP [17].



Problems with Direct Extension of U-AVP (C-AVP-v0) [17]
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• Leverages model's prediction to choose class-specific visual prompt.

• Lead to very poor prediction accuracy.

• Can serve as backdoor attack trigger [26] if the model's prediction is incorrect.

• Called C-AVP-v0 (Class-wise Adversarial Visual Prompt zeroth version).

Figure 6. Optimization problem of C-AVP-v0 [17].



Proposed Idea : Joint Optimization for C-AVP ! [17]
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• Introduce 3 additional losses to avoid backdoor attack trigger phenomenon.

• Simultaneously optimize class-specific visual prompts to not only enhance correct classifications but 

also minimize backdoor-like behaviors.

Figure 7. Joint optimization problem proposed by [17].



Performance and Limitations [17]
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• Significantly improve robustness accuracy compared with vanilla VP.

• Still lag behind from vanilla VP in terms of standard accuracy.

• Only tested on CIFAR-10 dataset.

Figure 8. Table performance stated by [17].
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