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Brief Recap of Adversarial Attacks

Generate adversarial examples (attacked images) :

Adversarial examples

Adversarial attack
(ex: small perturbation,
invisible by human eyes)
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Main objective :
* Fool the model with an image similar to the

original image.

Original Image

Original Image + Adversarial Attack

Prediction: Frog Prediction: Panda



Brief Recap of Adversarial Training

1. Model initialization. 3. Training the robust model.
Model architecture Clean
image
2. Generate adversarial examples (attacked images). Rob
Attacked Training obust
Adversarial examples image model

Adversarial attack

* 4. Evaluation.

« Testset on clean images.
« Testset on attacked images.
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Brief Recap of Test-Time Defense
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Figure 1. Differenttest-time defenses methods [23].

Either purify the input via test-time augmentation or modify the model parameters [23].

Input purification : Adding additional defense perturbation layer to the model (white-box or black-box)
[24, 25]

Model adaptation : Has access to the model parameters -> Only update some params while keeping

most of it frozen.



Problems with Previous Works

» Adversarial Training : Needs to generate adversarial image for every/most input -> Massive

computational cost [7, 8,9, 10, 21, 23, 24].

» Test-Time Defense: Significantly increase the inference time [17, 23].



Brief Recap of Visual Prompting [26]
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Figure 2. Illustration of visual prompting proposed by [26].

42.4% accuracy

81.4% accuracy

* Inspired by text prompting -> Leverage input space only to do transfer-learning.

« Successfully increased the performance on downstream task compared with zero-shot prediction.



Visual Prompting for Efficient Test-Time Defense [17] !

 Leverage Visual Prompting (VP) [26] to improve inference time for test-time defense.

» Achieve up to 42x inference time speed up compared to previous test-time defense methods [17].

 Originally defined as follows :

Given: Dy, as the training set.
(x,y) are feature x and label y.
¢ as the error for training data.
@ as the base model parameters.
C as the perturbation constraint set.
Find: 0 as the visual prompt to be designed.
Objective: minidmize E(x,y)ep, l(x+6:y,0)]

Subject to: 0 € C

Figure 3. Original optimization problem of vanilla VP [26].



Not A Straightforward Approach [17]

« Extend the concept of VP for adversarial robustness.

« Straightforward approach : Combine adversarial loss with generalization loss.

Given:

Find:
Objective:
Subject to:

Dy, as the training set. Given: Dy as the training set.

€ as the radius for the £~o-norm ball. A as the regularization parameter.

¢ as the prediction error for training data. Find: 0 as the visual prompt to be designed.
x’ as the adversarial input. Objective: minidmize A (x y)ep, (X + 85y, 6)+
laav(x + 6;y,0) = maXimizex’:Hx’—xHooge g(xl +6;y,0) E(X,y)EDtr[gadV(X +d;y,80)]

x € Be(x), where Be(x) is the £oo-norm ball at x. Subject to: & € C

Figure 4. Optimization problem of U-AVP [17].

* *Note : Regularization parameter to balance between generalization and adversarial robustness.

 Called Universal AVP (U-AVP). Can be solved with common min-max optimization method.



Problems with Universal Adversarial Visual Prompt (U-AVP) [17]
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Figure 5. Performance of U-AVP compared with vanilla VP [17].

» Dropped significantly in terms of standard accuracy (PGD step = 0).

* Not quite robust in terms of robustness accuracy (only improve ~18%).

« Reason : Due to same visual prompt for all inputs.



Problems with Direct Extension of U-AVP (C-AVP-v0) [17]

N

Given: Dy, split into {DE:)} 1 for N classes.

l.av as the adversarial error for training data.

Find: {5@} as the class-wise visual prompts.

i€[N]
1 & . .
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Figure 6. Optimization problem of C-AVP-v0[17].

Leverages model's prediction to choose class-specific visual prompt.
Lead to very poor prediction accuracy.
Can serve as backdoor attack trigger [26] if the model's prediction is incorrect.

Called C-AVP-vO0 (Class-wise Adversarial Visual Prompt zeroth version).

10



Proposed Idea : Joint Optimization for C-AVP ! [17]

. N
fc_ﬁvp,l({é(i)};‘Dtr,G) = Given: Dy, split into {Dg)}_l for N classes.

E(x,y)eDir Il’lax{l{la;}{ fe(x+ &™) 0) - fy(x+ 8%, 0), -7}, T as the confidence threshold.
oy

~ as a parameter for class-wise prompting penalties.

N 1N Find: {5 (i)}_ as the class-wise visual prompts.
lo-ave2({67}; D, 0) = = > i€[N]
N = 3
E . yepo max{f;(x+87;0) - f,(x+67;0), -7}, Objective: {m(i{:lir?ize Co_Avp.o ({5“)} : Dy, 9) + v Z lo_AVP.q ({5(1)} : Dy, 9)
)€ sWec
i€[N] q:1
(. _
be-ave3({077}; Du, 8) = N : Total number of classes,
E(x,y)eDi, max{l}clf;( fu(x+8%:0) - f,(x+8;0), -7}, i : Index for a specific class in [N],
k : Class not equal to y,
Figure 7. Joint optimization problem proposed by [17]. y : True class label

* Introduce 3 additional losses to avoid backdoor attack trigger phenomenon.

 Simultaneously optimize class-specific visual prompts to not only enhance correct classifications but

also minimize backdoor-like behaviors.
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Performance and Limitations [17]

Evaluation Std Robust acc vs PGD w/ step #
metrics (%) acc 10 20 50 100

Pre-trained 94.92 0 0 0 0

Vanilla VP 04 .48 0 0 0 0
U-AVP 27775 | 169 16.81 16.81 16.7
C-AVP-v0 19.69 | 1391 13.63 13.6 13.58
C-AVP (ours) | 57.57 | 3475 34.62 34.51 33.63

Figure 8. Table performance stated by [17].

« Significantly improve robustness accuracy compared with vanilla VP
« Still lag behind from vanilla VP in terms of standard accuracy.

* Only tested on CIFAR-10 dataset.
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