BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning

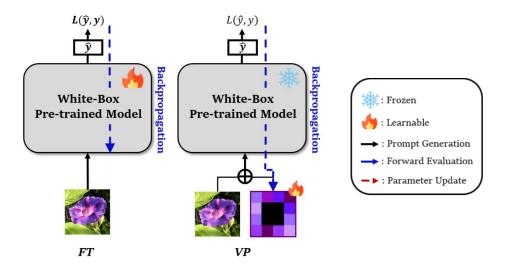
Paper Review by Ravialdy

Motivation:

Figure 1. Illustration of using black-box Pre-trained Model (PTM) in image classification task.

- Currently, many high-performing AI models are in form of APIs (e.g., DeepLobe, Kony, etc).
- However, existing approaches always consider white-box setting where we can do backpropagation which means we have access to model parameters for transfer-learning.
- Thus, the condition where we don't have access to model parameters (black-box) is still an unexplored problem.

Motivation:



Notation meanings:

 \hat{y} is the predicted label. y is the ground-truth label. L is an objective (loss) function.

*Note : FT = Fine-tuning.

 $Figure\ 2.\ Different\ transfer-learning\ methods\ in\ image\ classification\ task.$

- Previous work (Visual Prompting or VP [Bahng'22]) only update parameters in the input space where Pretrained Model (PTM) is full frozen.
- However, that approach still does backpropagation (white-box setting) -> requires large memory capacity.

#1 Key Idea : Coordinator

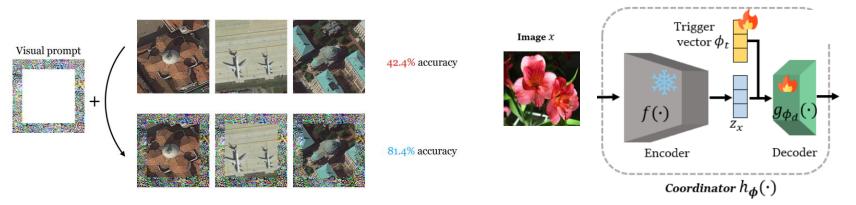


Figure 3. Illustration of visual prompt (learnable padding).

Figure 4. Diagram of coordinator part of BlackVIP model.

*Note : Z_x = Image features.

- Previous work use the same learnable visual prompt (padding) for all images in downstream dataset -> limit its flexibility to change visual semantics when necessary.
- Thus, BlackVIP design "Coordinator" to automatically design visual prompt conditioned on each image.

#2 Key Idea: SPSA with Gradient Correction (SPSA-GC)

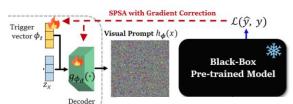


Figure 5. Diagram of SPSA-GC part of BlackVIP model.

Common SPSA parameter update rule:

$$\hat{g}_i(\phi_i) = \frac{L(\phi_i + c_i \Delta_i) - L(\phi_i - c_i \Delta_i)}{2c_i} \Delta_i^{-1}$$
 (1)

$$\phi_{i+1} = \phi_i - a_i \hat{g}_i(\phi_i) \tag{2}$$

SPSA-GC parameter update rule:

$$\phi_{i+1} = \phi_i + m_{i+1}$$

$$m_{i+1} = \beta m_i - a_i \hat{g}_i (\phi_i + \beta m_i)$$

*Note: SPSA = Simultaneous Perturbation Stochastic Approximation.

Notation meanings:

 $a_i > 0$ is the positive decaying sequences.

 $c_i \in [0,1]$ is a constant between 0 and 1.

 \hat{g} is the gradient approximation.

L is an objective function.

 $\phi_i \in \mathbb{R}^d$ is d-dimensional learnable parameters.

 $\Delta_i \in \mathbb{R}^d$ is a i^{th} -step random perturbation vector.

 $\beta \in [0, 1]$ is smoothing parameter.

 m_i is a momentum at step i.

- SPSA is well-known black-box optimization method due to its theoretically guarantees convergence [Spall'92].
- However, that method still requires many iterations because of data noise within visual prompt.
- Thus, inspired by Nesterov's Accelerated Gradient (NAG), the parameter update will become eq. (3) in order to speed up the process by using "look-ahead" gradient.

BlackVIP Overall Architecture:

BlackVIP

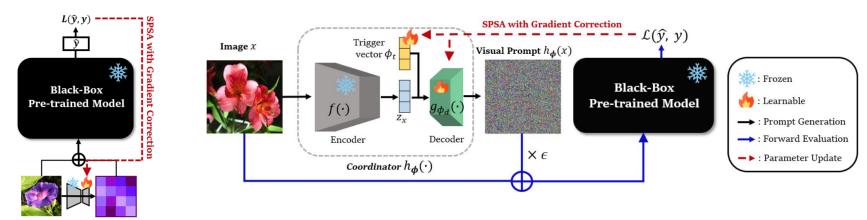


Figure 5. Illustration of BlackVIP complete architecture.

- Consists of two key parts, Coordinator and SPSA with Gradient Correction (SPSA-GC).
- Coordinator has a purpose to automatically create visual prompt given an image (input-dependent).
- SPSA-GC is used for parameters update without the need to access PTM's model parameters.

Performance:

Method	Caltech	Pets	Cars	Flowers	Food	Aircraft	SUN	DTD	SVHN	EuroSAT	RESISC	CLEVR	UCF	IN	Avg.	Win
VP (white-box)	94.2	90.2	66.9	86.9	81.8	31.8	67.1	61.9	60.4	90.8	81.4	40.8	74.2	67.4	71.1	13
ZS BAR VP w/ SPSA-GC	92.9 93.8 89.4	89.1 88.6 87.1	65.2 63.0 56.6	71.3 71.2 67.0	86.1 84.5 80.4	24.8 24.5 23.8	62.6 62.4 61.2	44.7 47.0 44.5	18.1 34.9 29.3	47.9 77.2 70.9	57.8 65.3 61.3	14.5 18.7 25.8	66.8 64.2 64.6	66.7 64.6 62.3	57.6 61.4 58.8	6
BlackVIP	93.7	89.7	65.6	70.6	86.6	25.8 25.0	64.7	45.2	44.3	73.1	64.5	36.8	69.1	67.1	64.0	13

Figure 6. Performance of BlackVIP across downstream tasks (only compared with black-box model).

Method	Peak Mei	mory (MB)	Params		
Memod	ViT-B	ViT-L	ViT-B	ViT-L	
FT (white-box)	21,655	76,635	86M	304M	
LP (white-box)	1,587	3,294	513K	769K	
VP (white-box)	11,937	44,560	69K	69K	
BAR	1,649	3,352	37K	37K	
VP w/ SPSA-GC	1,665	3,369	69K	69K	
BlackVIP	2,428	3,260	9K	9K	

Figure 7. Peak memory allocation and number of learnable parameters on ImageNet dataset.

Thank You