BAR: Black-Box Adversarial Reprogramming

Paper Review by Ravialdy

Brief Recap about BlackVIP:

BlackVIP

Figure 1. Illustration of BlackVIP complete architecture.

- BlackVIP is the first work for efficient transfer learning in black-box setting that uses visual prompting.
- However, BlackVIP is not the very first method to explore black-box fine-tuning.

Motivation:

Figure 2. Illustration of implementing black-box Pre-trained Model (PTM) in medical imaging classification task.

- Collecting data in medical domain is very expensive and involves many experts -> PTM helps to improve accuracy!
- There exists some high-performing PTM, but those are **often in form of APIs** or **proprietary softwares** (e.g., Clarifai.com and Microsoft Custom Vision API).
- Is it possible to fine-tune those models without having the access into its parameters (black-box setting)?

#Key Idea 1 : Use Adversarial Program

Figure 3. Diagram of adversarial program part in BAR model.

Transformed sampled data with adversarial program:

$$\widetilde{X}_i = X_i + P$$
 and $P = \tanh(W \odot M)$

Notation meanings:

 D_i is target data for each sample i = 1, 2, ..., n.

 X_i is zero-padded data sample containing D_i .

 $M \in \{0,1\}$ is a binary mask function.

 $W \in \mathbb{R}^d$ is a set of trainable parameters.

P is an adversarial program parametrized by W.

- Inspired by how adversarial attacks manipulates the prediction of a well-trained deep learning model.
- Sampled target data will be transformed with adversarial program parameterized by learnable W.

#Key Idea 2: Use Multi-Label Mapping (MLM)

Figure 4. Diagram of Multi-Label Mapping (MLM) part in BAR model.

*Note : ASD = Autism Spectrum Disorder.

Assume this is ASD medical classification task.

- Take top-k probabilities and corresponding labels from logits generated by black-box model.
- If the resulting source label belongs to those top-k labels, then the predicted label will be ASD, otherwise is non-ASD.

Zeroth Order Optimization (ZOO) for Black-box Setting

$$f(\mathbf{x},t) = \max\{\max_{i \neq t} \log[F(\mathbf{x})]_i - \log[F(\mathbf{x})]_t, -\kappa\}$$

Proposed Hinge-like loss by [Chen'17].

Notation meanings:

y is the ground-truth label.

f(x) is the predicted label.

 $\log[F(\mathbf{x})]_i$ is log of the confidence score for class i.

 $\log[F(\mathbf{x})]_t$ is log of the confidence score for desired class t.

 κ is a tuning parameter.

Figure 5. Example of Z00 method by [Chen'17] which is inspired by hinge loss.

- The true gradients of black-box models are infeasible to get -> Calculate the estimate gradients!
- There are already many ZOO methods, most of them are used in black-box adversarial attacks.
- The first ZOO method proposed by [Chen'17] for black-box adversarial attack in image classification.

Zeroth Order Optimization for BAR:

$$g_{j} = b \cdot \frac{f(W + \beta U_{j}) - f(W)}{\beta} \cdot U_{j},$$

$$\bar{g}(W) = \frac{1}{q} \sum_{j=1}^{q} g_{j},$$

$$W_{t+1} = W_{t} - \alpha_{t} \cdot \bar{g}(W_{t}),$$

Notation meanings:

f(W) be the loss or objective function.

W is the optimization variables.

q is a perturbation constant.

 $\bar{g}(W)$ is an averaged gradient estimator.

b is a scalar balancing bias constant.

 β is the smoothing parameter.

 $U_i \in \mathbb{R}^d$ is random direction vector.

Figure 6. Z00 used in BAR model.

• BAR uses the one-sided averaged gradient estimator proposed by [Liu'18] which is the best Z00 method at that time.

Performance:

Model	Accuracy	Sensitivity	Specificity
ResNet 50 (BAR)	70.33%	69.94%	72.71%
ResNet 50 (AR)	72.99%	73.03%	72.13%
Train from scratch	51.55%	51.17%	53.56%
Transfer Learning (finetuned)	52.88%	54.13%	54.70%
Incept. V3 (BAR)	70.10%	69.40%	70.00%
Incept. V3 (AR)	72.30%	71.94%	74.71%
Train from scratch	50.20%	51.43%	52.67%
Transfer Learning (finetuned)	52.10%	52.65%	54.42%
SOTA 1. (Heinsfeld et al., 2018)	65.40%	69.30%	61.10%
SOTA 2. (Eslami et al., 2019)	69.40%	66.40%	71.30%

Figure 7. Performance comparison on ASD classification task.

Model	From Scratch	Finetuning	AR	BAR
ResNet 50*	73.44%	76.63%	80.48%	79.33%
Incept. V3	72.10%	74.20%	76.42%	74.33%
DenseNet 121	67.22%	71.29%	75.22%	72.33%

Figure 8. Performance comparison on diabetic retinopathy detection task. The notation * denotes the network used in SOTA method.

- Notice that training from scratch and finetuning is not good in this case due to limited data.
- Also note that Adversarial Reprogramming (AR) is a white-box version of BAR.

Thank You